
Digital Object Identifier (DOI) 10.1140/epjc/s2004-01672-1
Eur. Phys. J. C 34, 173–180 (2004) THE EUROPEAN

PHYSICAL JOURNAL C

Cross sections for multi-particle final states at a linear collider

T. Gleisberg1a, F. Krauss1,2b, C.G. Papadopoulos2,3c, A. Schälicke1d, S. Schumann1e
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Abstract. In this paper total cross sections for signals and backgrounds of top- and Higgs-production
channels in e+e− collisions at a future linear collider are presented. All channels considered are characterized
by the emergence of six-particle final states. The calculation takes into account the full set of tree-
level amplitudes in each process. Two multi-purpose parton level generators, HELAC/PHEGAS and
AMEGIC++, are used, and their results are found to be in perfect agreement.

1 Introduction

Six-particle final states constitute the signature for many
processes that will be studied at the precision level at a
future e+e− linear collider. Important channels include
the production and decay of top quark pairs and – if ex-
istent – of one or more Higgs bosons, the latter process
allowing a test to be made of the structure of the Higgs
potential. Furthermore, if no evidence for a Higgs boson
was found at the LHC, the study of quartic gauge boson
couplings is mandatory in order to understand alternative
scenarios of electroweak symmetry breaking. Leaving the
framework of the standard model (SM) the production of,
say, chargino pairs in the minimal supersymmetric stan-
dard model (MSSM) will lead to six-particle final states
as well. To understand these processes at the precision
level, i.e. at the order of a few per cent, it is mandatory to
supplement typical approaches such as the narrow-width
approximation, with corresponding calculations through
full amplitudes, and to quantify the effect of non-resonant
contributions. Obviously, for hadronic final states, a full
QCD calculation is unavoidable.

Such investigations, however, are a formidable calcu-
lational task that cannot be handled without dedicated
computer programs. Two major difficulties make these nec-
essary.
(1) Including the full SM for the production of a six-particle
final state often leads to having to handle a large number
of diagrams. As an illustrative example of this problem,
take the process e+e− → e+e−e+e−e+e−, which results
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in 13896 Feynman diagrams. Obviously, the common text-
book method of squaring the diagrams, by employing com-
pleteness relations for the external particles and evaluating
the traces, is not a very efficient way to calculate the ma-
trix element squared.
(2) Apart from the treatment of an enormous number of
diagrams, growing roughly factorially with the number of
external legs, the integration over the phase space of the
outgoing particles becomes a tedious task. The high dimen-
sionality, 3n−4, for n final-state particles necessitates the
use of Monte Carlo methods. To achieve convergence of the
Monte Carlo procedure process- and cut-dependent phase-
space mappings are required that tame wildly fluctuating
integrands, which are due to nearly on-shell propagators. A
benefit of Monte Carlo methods, if carefully implemented,
is that not only total cross sections but also distributions
including all possible types of kinematical cuts can be cal-
culated on an equal footing.

In the past years, different types of parton level gener-
ators have been constructed. They can be crudely charac-
terized as either specialized or multi-purpose generators.

Usually, the former ones contain explicit matrix ele-
ments and phase-space mappings for specific classes of pro-
cesses with specific assumptions. These matrix elements
were constructed before outside the respective program,
and this feature also allows for instance to implement non-
universal higher order corrections in a controlled way. Of-
ten, the phase-space mappings can be optimized before
as well.

Examples for such programs dealing with some of the
processes discussed here are LUSIFER [4] and eett6f [5].
LUSIFER provides all six-fermion final states, including
QCD contributions for up to four final-state quarks. Ex-
ternal fermions within LUSIFER are assumed to be mass-
less. The program eett6f is specialized in top quark pair
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production channels, here the outgoing fermions might be
massive. Both programs use versions of the adaptive mul-
tichannel method in the spirit of [6] for their integration. A
further dedicated program using the multichannel impor-
tance sampling is SIXFAP [7]. It provides the electroweak
contributions for a large set of six-fermion final states,
taking into account possible non-zero fermion masses.

In contrast to specialized programs, multipurpose codes
generate both the matrix elements and the phase-space
mappings with or without some intervention by the user.
Apart from the programs used in this paper, examples
of these types of programs are O’Mega/Whizard [8, 9]
and MadGraph/MadEvent [10, 11]. In the first package,
O’Mega [8] relies on a version of the alpha algorithm [12].
However, in the present version of O’Mega, full QCD has
not been implemented yet. The integration of the resulting
matrix elements is achieved through Whizard [9], which
constructs phase-space mappings automatically and in-
tegrates them with the VAMP algorithm [13]. In fact,
Whizard can also be interfaced with other matrix element
generators and it can be used to generate unweighted, sin-
gle events. In contrast, MadGraph/MadEvent generates all
Feynman diagrams for a process under consideration and
then passes the information to the HELAS package [14]
for the translation into corresponding helicity amplitudes.
The integration channels are constructed automatically,
and a new version of the adaptive multichannel method
described in [11] is employed for the actual integration and
the generation of unweighted events.

This paper deals with the calculation of total cross sec-
tions for many relevant processes at a future e+e− col-
lider with two different, independent packages, namely
HELAC/PHEGAS and AMEGIC++. Similar to the com-
parison of four-fermion generators at the LEP2 Monte
Carlo Workshop [15], a detailed study and mutual bench-
marking of tools for six- and eight-particle final states at a
future linear collider has been initiated in the framework
of the extended ECFA/DESY study [16]. Here, a further
step into this direction is reported.

For the case of exclusively massless final-state particles,
an extended comparison for a large set of six-fermion final
states between the programs LUSIFER and MADGRAPH
has been presented in [4]. The phase-space integration for
the latter program has been done by WHIZARD. Be-
side the comparison of total cross sections relevant for
a 500 GeV collider the authors present some phenomeno-
logically relevant differential distributions for off-shell top
quark pair production and Higgs boson production in the
intermediate Higgs mass range. In addition the influence
of initial-state radiation has been investigated. The two
programs to be studied within this work have been cross
checked for a large set of processes against the results
presented in [4]. For all channels considered an agree-
ment within two to three standard deviations has been
achieved. In addition, a compendium of results achieved
by different generators, including HELAC/PHEGAS and
AMEGIC++, for selected top quark pair production chan-
nels in the massless fermion approximation can be found
in [17].

This paper is organized as follows. In Sect. 2 and 3 the
relevant features of the two programs, HELAC/PHEGAS
and AMEGIC++, are briefly reviewed. In Sect. 4 the re-
sults are presented and discussed. Conclusions are drawn
in Sect. 5.

2 The HELAC/PHEGAS package

2.1 Amplitude computation: HELAC

The traditional representation of the scattering amplitude
in terms of Feynman graphs results in a computational
cost that grows like the number of those graphs, therefore
as n!, where n is the number of particles involved in the
scattering process.

An alternative to the Feynman graph representation is
provided by the Dyson–Schwinger approach.

Dyson–Schwinger equations recursively express the n-
point Green functions in terms of the 1-,2-,. . . , (n − 1)-
point functions. For instance in QED these equations can
be written as follows:

= + (1)

bµ(P ) =
n∑

i=1

δP=pib
µ(pi) (2)

+
∑

P=P1+P2

(ig)Πµ
ν ψ̄(P2)γνψ(P1)ε(P1, P2),

where

bµ(P ) = ψ(P ) = ψ̄(P ) = (3)

describes a generic n-point Green function with one out-
going photon, fermion or antifermion leg, respectively, car-
rying momentum P . Πµν stands for the boson propagator
and ε takes into account the sign due to fermion anti-
symmetrization.

Technical details about the implementation of the algo-
rithm for the electroweak interactions can be found in [1].

For QCD amplitudes, color representation and sum-
mation play an important role. Usually, for the n-gluon
amplitude the well-known color decomposition is used:

M = 2ign−2
∑

P (2,...,n)

Tr(ta1 . . . tan)C(1, . . . , n). (4)

For processes involving quarks a similar expression may
be derived. For further details, the reader is referred to
the vast literature on the subject [18]. Methods for calcu-
lating the C-functions have been developed [19], includ-
ing some recent ones, more suitable for multiparticle pro-
cesses [20, 21]. One of the most interesting aspects of this
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decomposition is the fact that the C-functions satisfy cer-
tain useful properties, such as gauge invariance and cyclic
symmetry. Nevertheless, the computational complexity is
rather high and the evaluation of the squared color matrix
a rather complicated task [22].

In HELAC a novel approach has been considered. It is
based on the color connection (or color flow) representation
of the interaction vertices, where the explicit reference to
the color has been avoided, as is also the case in the usual
color decomposition. The advantage, however, is that the
color factors acquire a much simpler form, which moreover
holds for gluon as well as for quark amplitudes, leading
to a unified approach for any tree-order process involving
any number of colored partons. Moreover, the unweighting
procedure is significantly facilitated, since the usual infor-
mation on color connections, needed by the parton shower
Monte Carlo, is automatically available, without any fur-
ther calculation. The color factor is universally given by

FI = δ1σI(1)δ2σI(2) . . . δnσI(n) , (5)

whereas the color matrix, defined as

MIJ =
∑

colors

FIF†
J , (6)

with the summation running over all colors, 1, . . . , Nc, has
a very simple representation:

MIJ = Nm(σI ,σJ )
c . (7)

Here, 1 ≤ m(σI , σJ) ≤ n counts the number of cycles made
by the elements of the permutations σI and σJ . Details can
be found in [23].

2.2 Phase-space integration: PHEGAS

The study of multiparticle processes, such as six-fermion
production in e+e−, requires efficient phase-space Monte
Carlo generators. The reason is that the squared amplitude,
being a complicated function of the kinematical variables,
exhibits strong variations in specific regions and/or direc-
tions of the phase space, lowering in a substantial way the
speed and the efficiency of the Monte Carlo integration. A
well-known way out of this problem relies on algorithms
characterized by two main ingredients:
(1) the construction of appropriate mappings of the phase-
space parametrization, in such a way that the main vari-
ation of the integrand can be described by a set of almost
uncorrelated variables, and
(2) a self-adaptation procedure that reshapes the gener-
ated phase-space density in order to be as close as possible
to the integrand.

In order to construct appropriate mappings, it is impor-
tant to note that the integrand, i.e. the squared amplitude,
has a well-defined representation in terms of Feynman di-
agrams. It is therefore natural to associate to each Feyn-
man diagram a phase-space mapping that parametrizes the
leading variation coming from it. In PHEGAS, information

from HELAC is used to automatically construct a repre-
sentation of all Feynman graphs contributing to the given
process. The subset of Feynman graphs that results in a
different phase-space parametrization is then used as kine-
matical mappings, called channels, to perform the Monte
Carlo integration. Details can be found in [2].

Since in six- and eight-fermion production a large num-
ber of kinematical channels contribute, typically of the
order of 102 to 104, the optimization is also used to re-
duce their number. This is based on the fact that many
of the channels exhibit an important correlation that ren-
ders them practically useless as separate channels. The
reduction in the number of channels achieved by this opti-
mization is generally important, resulting in a very efficient
and rapid integration.

The main points can be summarized as follows.
(1) The algorithm exhibits a computational cost that grows
like ∼ 3n, in contrast to then! growth of the Feynman graph
approach. Therefore there is no severe limitation in com-
puting many-particle amplitudes and the computation of
processes involving 10 or more external particles is within
reach [24].
(2) All electroweak vertices in both the Feynman and the
Unitary gauge have been included, allowing highly non-
trivial checks to be performed. The QCD interactions have
been implemented in the color connection representation,
allowing also a fast unweighting procedure to be followed.
The decay width of unstable particles [25] is introduced
in the fixed-width and complex-mass schemes [26]. Any
process with any type of standard model particle can be
reliably computed.
(3) Special features include also the possibility to use higher
precision floating point arithmetic, allowing full control
over all possible phase-space regions. Speeding up tech-
niques, for helicity the Monte Carlo treatment and large
Nc estimates, are also available.
(4) Incorporation of higher order corrections, besides ini-
tial state radiation (currently available fermion-loop cor-
rections up to three-point functions), and the implemen-
tation of the four-point function fermion-loop corrections
and of the minimal supersymmetric standard model are
in progress.

3 The program AMEGIC++

AMEGIC++, acronym for (A Matrix Element Generator
In C++), is a multi-purpose parton level generator written
in C++. It provides a convenient tool for the calculation
of cross sections for scattering processes at the tree level
in the framework of the SM and the MSSM, allowing for
the inclusion of initial state radiation through the structure
function approach. Recently the code was extended to cover
processes in the ADD model of large extra dimensions
as well [27]. The program can also be used to generate
single events and it is one of the modules for the new
complete event simulation framework SHERPA [28]. As
such, the single events of AMEGIC++ can be handed over
to the parton shower module APACIC++ [29] with the help
of a new method that is correct at the next-to-leading
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Fig. 1. Factoring out common pieces of amplitudes with iden-
tical color structure. In the example above, the parts within the
boxes are identical; hence the two amplitudes can be added,
and the terms inside the box can be factored out

logarithmic accuracy [30] and are thus linked correctly
to fragmentation.

In AMEGIC++, full sets of Feynman diagrams are
constructed automatically and are translated by the pro-
gram into helicity amplitudes in a formalism similar to
the one in [31]. The color structure of each diagram is
represented as a word string, the emerging structures are
grouped into sets of amplitudes with identical, common
color structure. Based on them, a matrix of color factors
between amplitudes is calculated using the ordinary SU(3)
algebra. A number of refinements of the helicity method
has been implemented within the code as well. First of all,
the algorithm presented in [32] fixes the relative signs of
amplitudes when Majorana fermions are present. Further-
more, explicit polarizations for massive or massless external
spin-1 bosons are enabled, allowing us to consider polarized
cross sections. Similar considerations help to replace nu-
merators of spin-1 propagators by summing over suitably
defined polarizations for off-shell particles disentangling
nested Lorentz structures emerging for amplitudes with
many internal spin-1 bosons. As a result, AMEGIC++
needs only quite a limited set of building blocks to con-
struct all helicity amplitudes. Internally, they are repre-
sented as word strings employing some knowledge-storing
mechanism that ensures that all building blocks have to be
evaluated only once for each call of the full matrix element.
With the help of internal methods these word strings are
further simplified. Furthermore, another massive gain in
efficiency has been achieved by summing amplitudes with
identical color structure and by algorithms for finding com-
mon factors. This is exemplified in Fig. 1. Having performed
these manipulations, the resulting helicity amplitudes are
stored in library files.

The introduction of finite-width effects while main-
taining U(1) and SU(2) gauge invariance has been sub-
ject of many studies [25]. Within AMEGIC++ the fixed-
width scheme (FWS) and the gauge invariance preserving
complex-mass scheme (CMS) [26] are supported. The ef-
fects of gauge invariance violation in the FWS turned out
to be strongly suppressed [4,26], leaving this simple scheme
still useful for practical calculations.

Defining the complex-mass parameters of the electro-
weak gauge bosons, the Higgs boson and the top quark in
terms of the real masses and the constant widths through

M2
V = m2

V − iΓV mV , V = W,Z

M2
H = m2

H − iΓH mH , Mt = mt − iΓt/2 , (8)

the corresponding propagators can be written as

Dµν
F (q) =

−gµν + qµqν/M2
V

q2 −M2
V

, DF(q) =
1

q2 −M2
H

,

SF(q) =
q/+Mt

q2 −M2
t

. (9)

In the FWS, the electroweak mixing angle is defined ac-
cording to

sin2 θW = 1 − m2
W

m2
Z

. (10)

It is kept real. For the case of the gauge-invariant CMS, the
real gauge boson masses have to be replaced by their com-
plex counterparts and this parameter is therefore complex
as well.

Within AMEGIC++ the Yukawa couplings of fermions
to the Higgs boson and their kinematical masses are decou-
pled. This allows us to study, for example, the production
of Higgs bosons and their decay into b-quarks, even in those
cases where the user prefers to neglect the influence of the
b-mass on both the phase-space and the helicity structure.

For the integration over the phase space of the outgoing
particles, AMEGIC++ employs an adaptive multichannel
method [6]. Similar to their implementation, generic el-
ements for phase-space mappings such as propagator-like
structures are provided. The individual Feynman diagrams
are analyzed individually and one or more suitable phase-
space parametrizations for each diagram are automatically
created and stored in library files. As an example, consider
Fig. 2, which exhibits a diagram and its translation into
propagator and decay parametrizations. These files, both
for the amplitudes and the phase-space parametrizations,
are compiled and linked to the code before the actual in-
tegration starts.

For users of AMEGIC++ only very little intervention is
needed. Having specified the process(es), the model frame-
work and its parameters, a first “initialization” run of the
code results in the creation of library files. After their
compilation, a second, “production” run will generate the
results without any further manipulation.

2

1

5

2

3

4

Ds(23, 45)
×Da(2, 3) × Da(5, 4)
×P0(23) × P0(45)

Fig. 2. Translation of a Feynman diagram into a phase-space
parametrization. Ds,a denote symmetric or asymmetric decays;
the latter ones reproduce the typical feature of collinear emis-
sion of particles notorious for gauge theories with massless
spin-1 bosons. The propagator terms for massless particles P0

peak at the minimal allowed invariant mass
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4 Numerical results

4.1 Input parameters and phase-space cuts

The SM parameters are given in the Gµ scheme:

mW = 80.419 GeV , ΓW = 2.12 GeV,

mZ = 91.1882 GeV , ΓZ = 2.4952 GeV,

Gµ = 1.16639 × 10−5 GeV−2,

sin2 θW = 1 −m2
W /m2

Z ,

αs = 0.0925(0.0891) at 360(500) GeV. (11)

The electromagnetic coupling is derived from the Fermi
constant Gµ according to

αem =
√

2GµM
2
W sin2 θW
π

. (12)

The mass of the Higgs boson is assumed to be MH =
130 GeV and its associated SM tree-level width is ΓH =
0.00429 GeV. For this Higgs boson mass its branching ra-
tios H → b b̄ and H → W+W− → 4f are of the same
order and therefore both decay channels signify its occur-
rence as an intermediate state. For the massive fermions,
the following masses have been used:

mµ = 105.6583 MeV, mτ = 1.777 GeV,

mu = 5 MeV, md = 10 MeV,

ms = 200 MeV, mc = 1.3 GeV,

mb = 4.8 GeV,

mt = 174.3 GeV, Γt = 1.6 GeV. (13)

The constant widths of the electroweak gauge bosons, the
Higgs boson and the top quark are introduced via the
fixed-width scheme as defined in Sect. 3. CKM mixing of
the quark generations and the coupling of the Higgs boson
to the very light fermion flavors (e, u, d) is neglected.

Concerning the phase-space integration, the following
cuts are applied on the external particles:

θ(l,beam) > 5◦ , θ(l, l′) > 5◦ , El > 10 GeV,

θ(q,beam) > 5◦ , θ(l, q) > 5◦ , Eq > 10 GeV,

m(q, q′) > 10 GeV , (14)

where θ(i, j) specifies the angle between the particles i and
j in the center-of-mass frame, and l, q and beam denote
charged leptons, quarks or gluons and the beam electrons
or positrons, respectively. The invariant mass of a jet pair
qq′ is denoted by m(q, q′).

All results presented here are obtained using 106 points
(before cuts); statistical errors of the Monte Carlo integra-
tions, i.e. one standard deviation, are given in parentheses.

Table 1. The cross sections for possible signals and back-
grounds of top quark pair production in e+ e− annihilation. All
results in fb for

√
s = 360 GeV (first row) and

√
s = 500 GeV

(second row)

Top-quark channels
Final state QCD AMEGIC++ [fb] HELAC [fb]
bb̄ud̄dū yes 32.90(15) 33.05(14)

yes 49.74(21) 50.20(13)
no 32.22(34) 32.12(19)
no 49.42(44) 50.55(26)

bb̄uūgg – 11.23(10) 11.136(41)
– 9.11(13) 8.832(43)

bb̄gggg – 18.82(13) 18.79(11)
– 24.09(18) 23.80(17)

bb̄ud̄e−ν̄e yes 11.460(36) 11.488(15)
yes 17.486(66) 17.492(41)
no 11.312(37) 11.394(18)
no 17.366(68) 17.353(31)

bb̄e+νee
−ν̄e – 3.902(31) 3.885(7)

– 5.954(55) 5.963(11)
bb̄e+νeµ

−ν̄µ – 3.847(15) 3.848(7)
– 5.865(24) 5.868(10)

bb̄µ+νµµ−ν̄µ – 3.808(16) 3.861(19)
– 5.840(30) 5.839(12)

4.2 Results

First of all, processes have been considered that serve as
signals or backgrounds for the production and decay of
top pairs, Table 1. Since the branching ratio is practically
100% for the decay of top quarks into bottom quarks and
a W (t → bW+, t̄ → b̄W−), all modes considered include
a pair of bottom quarks. In cases involving a mixture of
top production and decay and pure QCD diagrams, the
relative importance of the different contributions to the
total cross section has been estimated by switching on
and off the QCD coupling constant. In both cases (the
fully hadronic mode bb̄uūdd̄ and the semileptonic mode
bb̄ud̄e−ν̄e) the top contribution is by far the dominating
channel; the difference of taking into account the QCD
contributions or neglecting them is of the order of 2–3%.
Also, the total cross section of the fully hadronic channel
is substantially larger than the cross section of any other
individual bb̄+4 jets mode.

For the QCD contributions, a similar pattern arises also
in the vector-boson fusion channels, cf. Tables 2 and 3.
These channels are characterized by either an electron–
positron or an electron–neutrino anti-neutrino pair in the
final state, corresponding to either Z boson or to W boson
fusion processes, respectively. Again, switching on and off
the QCD coupling constant gives rise to differences on the
level of a few per cent. In contrast, taking into account the
Higgs boson (Table 2) which may be produced in the s-
channel through the fusion of two t-channel vector bosons,
or neglecting it (Table 3) changes the total cross sections
for all channels considered by a factor of 2 or larger. This is
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Table 2. The cross sections for different e+ e− → 6f final
states corresponding to the Higgs production via vector-boson
fusion signal. All results in fb for

√
s = 360 GeV (first row)

and
√

s = 500 GeV (second row)

Vector fusion with Higgs exchange
Final state QCD AMEGIC++ [fb] HELAC [fb]
e−e+uūdd̄ yes 0.6842(85) 0.6858(31)

yes 1.237(15) 1.265(5)
no 0.6453(62) 0.6527(35)
no 1.206(14) 1.2394(75)

e−e+uūe−e+ – 6.06(36)e-03 6.113(87)e-03
– 6.58(23)e-03 6.614(80)e-03

e−e+uūµ−µ+ – 9.24(12)e-03 9.04(11)e-03
– 9.25(17)e-03 9.145(74)e-03

νeν̄eud̄dū yes 1.15(3) 1.176(6)
yes 2.36(7) 2.432(12)
no 1.14(3) 1.134(5)
no 2.35(7) 2.429(13)

νeν̄eud̄e−ν̄e – 0.426(11) 0.4309(48)
– 0.916(30) 0.9121(48)

νeν̄eud̄µ−ν̄µ – 0.425(12) 0.4221(30)
– 0.878(27) 0.8888(47)

Table 3. The backgrounds to Higgs production via vector-
boson fusion. All contributions from intermediate Higgs bosons
are neglected. Cross sections are given in fb for

√
s = 360 GeV

(first row) and
√

s = 500 GeV (second row)

Vector fusion without Higgs exchange
Final state QCD AMEGIC++ [fb] HELAC [fb]
e−e+uūdd̄ yes 0.4838(50) 0.4842(25)

yes 1.0514(97) 1.0445(51)
no 0.4502(31) 0.4524(23)
no 1.0239(79) 1.0227(43)

e−e+uūe−e+ – 3.757(98)e-03 3.577(43)e-03
– 4.082(56)e-03 4.214(46)e-03

e−e+uūµ−µ+ – 5.201(61)e-03 5.119(70)e-03
– 5.805(67)e-03 5.828(49)e-03

νeν̄eud̄dū yes 0.15007(53) 0.15070(64)
yes 0.4755(21) 0.4711(24)
no 0.12828(42) 0.12793(55)
no 0.4417(19) 0.4398(21)

νeν̄eud̄e−ν̄e – 0.04546(13) 0.04564(19)
– 0.16033(63) 0.16011(78)

νeν̄eud̄µ−ν̄µ – 0.04230(12) 0.04180(16)
– 0.14383(53) 0.14439(65)

especially pronounced for channels that can be identified as
WW -fusion channels with a semileptonic or fully hadronic
decay of the W -pair produced by the Higgs decay (i.e.
νeν̄eud̄e

−ν̄e and νeν̄eud̄µ
−ν̄µ, or νeν̄eud̄dū, respectively),

where the cross sections are larger by one order of magni-
tude.

Table 4. The cross sections for different e+ e− → 6f final
states corresponding to the Higgs-strahlung signal. All results
given in fb for

√
s = 360 GeV (first row) and

√
s = 500 GeV

(second row)

Higgs production through Higgs strahlung
Final state QCD AMEGIC++ [fb] HELAC [fb]
µ−µ+µ+νµe−ν̄e – 0.03244(27) 0.03210(15)

– 0.03747(29) 0.03749(32)
µ−µ+ud̄e−ν̄e – 0.0924(8) 0.09306(46)

– 0.1106(22) 0.10901(66)
µ−µ+µ−µ+e−e+ – 2.828(67)e-03 2.923(52)e-03

– 2.731(65)e-03 2.691(42)e-03
µ−µ+uūdd̄ yes 0.2534(24) 0.2540(16)

yes 0.2634(22) 0.2642(15)
no 0.2441(23) 0.2471(15)
no 0.2593(22) 0.2589(14)

µ−µ+uūuū yes 1.125(8)e-02 1.135(22)e-02
yes 8.767(65)e-03 8.978(58)e-03
no 7.929(57)e-03 8.078(92)e-03
no 6.098(35)e-03 6.013(26)e-03

Table 5. Background contributions to the Higgs-strahlungs
signal for various 6f final states. All diagrams with intermediate
Higgs bosons have been neglected. Cross sections are given in fb
for

√
s = 360 GeV (first row) and

√
s = 500 GeV (second row)

Backgrounds to Higgs strahlung
Final state QCD AMEGIC++ [fb] HELAC [fb]
µ−µ+µ+νµe−ν̄e – 0.01845(14) 0.01843(13)

– 0.03054(23) 0.03092(19)
µ−µ+ud̄e−ν̄e – 0.05284(57) 0.05209(33)

– 0.08911(53) 0.08925(48)
µ−µ+µ−µ+e−e+ – 2.204(52)e-03 2.346(49)e-03

– 2.280(66)e-03 2.277(62)e-03
µ−µ+uūdd̄ yes 0.1412(10) 0.1404(11)

yes 0.2092(12) 0.2075(13)
no 0.1358(20) 0.1341(12)
no 0.2040(12) 0.2015(11)

µ−µ+uūuū yes 5.937(24)e-03 5.937(25)e-03
yes 6.134(29)e-03 6.108(27)e-03
no 2.722(10)e-03 2.710(11)e-03
no 3.290(12)e-03 3.303(12)e-03

Another mode for Higgs production at an electron–
positron collider is Higgs strahlung, where the Higgs boson
is radiated off a Z boson in the s-channel. In Table 4, total
cross sections for such modes are displayed, where the Z
boson decays into muons and the Higgs boson goes into
four fermions through a pair of W or Z bosons. In Table 5,
identical total cross sections for the same final states, but
neglecting the Higgs contribution, are shown. In both cases,
again, the size of the pure QCD contributions is found to be
small for most final states, i.e. of the order of few per cent.
The only exception is for a pair of muons and four identical
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Table 6. Cross sections for the process e+ e− → µ−µ+bb̄bb̄. All
results in fb for

√
s = 360 GeV (first row) and

√
s = 500 GeV

(second row)

Multiple Higgs production
Final state QCD AMEGIC++ [fb] HELAC [fb]
µ−µ+bb̄bb̄ yes 2.560(26)e-02 2.583(26)e-02

yes 3.096(60)e-02 3.019(43)e-02
no 1.711(55)e-02 1.666(28)e-02
no 2.34(12)e-02 2.36(10)e-02

Table 7. Cross sections for e+ e− → µ−µ+bb̄bb̄ with all contri-
butions due to intermediate Higgs bosons left out. All results
in fb taken for

√
s = 360 GeV (first row) and

√
s = 500 GeV

(second row)

Backgrounds to multiple Higgs production
Final state QCD AMEGIC++ [fb] HELAC [fb]
µ−µ+bb̄bb̄ yes 7.002(32)e-03 7.044(22)e-03

yes 6.308(24)e-03 6.364(21)e-03
no 2.955(11)e-03 2.972(12)e-03
no 3.704(15)e-03 3.695(13)e-03

Table 8. Cross sections for e+ e− → µ−µ+bb̄bb̄ with all con-
tributions proportional to the triple Higgs boson coupling left
out. All results in fb taken for

√
s = 360 GeV (first row) and√

s = 500 GeV (second row)

Backgrounds to triple Higgs coupling
Final state QCD AMEGIC++ [fb] HELAC [fb]
µ−µ+bb̄bb̄ yes 2.512(34)e-02 2.491(31)e-02

yes 2.578(32)e-02 2.629(53)e-02
no 1.689(22)e-02 1.702(72)e-02
no 2.123(27)e-02 2.107(37)e-02

quarks; there, the inclusion of QCD changes the results by
roughly 20%, when the Higgs boson is taken into account,
and by a factor of roughly two when its contribution is
neglected. It is amusing to note that this relative factor of
two compares in size with the effect of including the Higgs
boson itself. This, however, is true only for the mode that
can be imagined as e+e− → ZH → ZZZ → µ+µ−uūuū.
In all other cases, as said before, inclusion of QCD has
minor effects only; the Higgs boson in contrast roughly
doubles the total cross section in all the other channels.

One of the salient research goals at a potential linear
collider operating at energies around 500 GeV is the deter-
mination of the Higgs potential. For this, the self-couplings
of the Higgs bosons have to be checked. In the framework
of this publication, results are provided for the channel
where the Higgs bosons emerge in Higgs strahlungs-like
topologies and decay into a pair of bottom quarks. This
leads to final states µ+µ− + 4b, where the muons mainly
come from the Z bosons. Results for total cross sections for
the process e+e− → µ+µ− + 4b, where contributions me-
diated by Higgs bosons have been included or completely
neglected, are given in Tables 6 and 7, respectively. From

the results displayed one can read off that the inclusion
of intermediate Higgs bosons enhances the cross sections
by a factor of three to four. Again, also the effect of QCD
has been checked. For the process involving intermediate
Higgs bosons, QCD leads to total cross sections that are
larger by roughly 30%–40%, without the Higgs bosons;
QCD contributes on the level of factors of two to three.
Concerning the influence of the Higgs self-coupling Table 8
shows results for e+ e− → µ−µ+bb̄bb̄ with the triple Higgs
coupling being neglected but all remaining Higgs boson
contributions still taken into account. In comparison with
Table 6 no significant contribution of this coupling for a
collider energy of 360 GeV can be observed. However, for
a center-of-mass energy of 500 GeV the exclusion of the
triple Higgs coupling reduces the total cross section by
about 10%.

5 Summary of results

In the framework of this comparison, total cross sections for
90 different processes involving six-particle final states have
been obtained by the two multi-purpose matrix element
generator packages HELAC/PHEGAS and AMEGIC++.
The integration over the multidimensional phase space of
the final states has been performed with Monte Carlo meth-
ods, and in all cases one million MC points have been
used. For nearly all cross sections the resulting statisti-
cal error was significantly smaller than 1%: roughly 5 per
mille. There have been no significant differences between
the two codes. To compare the results, for each process i
the deviation s(i) of the two resulting cross sections σ(i)

H

and σ(i)
A has been calculated through

s(i) =
σ

(i)
A − σ

(i)
H√(

∆σ
(i)
A

)2
+

(
∆σ

(i)
H

)2
. (15)
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Fig. 3. The distribution of the deviations s(i), given by (15),
for the ninety total cross sections i presented in this paper.
The average value is s̄ = −0.065; their variance is σs ≈ 1
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The distribution of the individual differences is depicted in
Fig. 3. The average deviation is s̄ = −0.065, the variance
in their distribution is σs ≈ 1. The maximal difference
between two cross sections is smaller than three standard
deviations, s(max.) ≈ 2.6. The distribution of differences
follows roughly a Gaussian distribution.

To summarize: Both packages, HELAC/PHEGAS as
well as AMEGIC++, lead, with quite different methods,
to consistent results for total cross sections for a large
number of different processes with six particles in the final
state. This provides an independent check of the preci-
sion level of the two codes, which can be considered as
successfully tested.
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